Volume 2, 2006________________________________________________________________ Clinical Proteomics
Data Mining In Proteomic MS ________________________________________________________________ 31
33. Qu, Y., Adam, B. L., Thornquist, M., Potter, J.
D., Thompson, M. L., and Yasui, Y. (2003) Data
reduction using a discrete wavelet transform
in discriminant analysis of very high dimen-
sionality data. Biometrics 59, 143–151.
34. Li, J., Zhang, Z., Rosenzweig, J., Wang, Y. A.,
and Chan, D. W. (2002) Proteomics and bioin-
formatics approaches for identification of
serum biomarkers to detect breast cancer. Clin.
Chem. 47, 1296–1304.
35. Holland, J. H. (1994) Adaptation in Natural and
Artificial Systems: An Introductory Analysis
With Applications of Biology, Control and Artifi-
cial Intelligence, 3rd ed. MIT Press, Cambridge,
MA.
36. Conrads, T. P., Zhou, M., Petricoin, E. F.,
Liotta, L., and Veenstra, T. D. (2003) Cancer
diagnosis using proteomic patterns. Expert
Rev. Mol. Diagn. 3, 411–420.
37. Petricoin, E. F. and Liotta, L. A. (2004) SELDI-
TOF based proteomic pattern diagnostics for
early detection of cancer. Curr. Opin. Biotech.
15, 24–30.
38. Lilien, R. H., Farid, H., and Donald, B. R.
(2003) Probabilisitic disease classification of
expression—dependent proteomic data from
mass spectrometry of human serum. J. Comp.
Biol. 10, 925–946.
39. Purohit, P. V. and Rocke, D. M. (2003) Dis-
criminant models for high-throughput pro-
teomics mass spectrometer data. Proteomics 3,
1699–1703.
40. Slotta, D. J., Heath, L. S., Ramakrishnan, N.,
Helm, R., and Potts, M. (2003) Clustering mass
spectrometry data using order statistics. Pro-
teomics 3, 1687–1691.
41. Coombes, K. R., Fritsche, H. A., Clarke, C., et al.
(2003) Quality control and peak finding from
nipple aspirate fluid by surface enhanced laser
desorption and ionization. Clin. Chem. 49,
1615–1623.
42. Li, L., Tang, H., Wu, Z., et al. (2004) Data
mining techniques for cancer detection using
serum proteomic profiling. Artif. Intel. Med. 32,
71–83.
43. Quinlan, J. R. (1986) Introduction of decision
trees. Machine Learning 1, 81–106.
44. Breiman, L., Friedman, J. H., Olshen, R. A.,
and Stone, C. J. (1984) Classification and
Regression Trees. Wadsworth International
Group, Belmont, CA.
45. Won, Y., Song, H. J., Kang, T. W., Kim, J. J.,
Han, B. D., and Lee, S. W. (2003) Pattern anal-
ysis of serum proteome distinguished renal
cell carcinoma from other urologic diseases
and healthy persons. Proteomics 3, 2310–2316.
46. Markey, M. K., Tourassi, G. D., and Floyd, C.
E., Jr. Decision Tree classification of proteins
identified by mass spectrometry of blood sam-
ples from people with and without lung
cancer. Proteomics 3, 1678–1679.
47. Zhang, Y. F., Wu, D. L., Liu, W. W., et al. (2004)
Tree analysis of mass spectral urine profiles
discriminates transitional cell carcinoma of the
bladder from non cancer patient. Clin.
Biochem. 37, 772–779.
48. Kang, X., Xu, Y., Wu, X., et al. (2005) Proteomic
fingerprints for potential application to early
diagnosis of severe acute respiratory syn-
drome. Clin. Chem. 51, 56–64.
49. Bishop, C. M. (1995) Neural Networks for Pat-
tern Recognition. Oxford University Press,
Oxford, UK .
50. Rumelhart, D., Hinton, G., and Williams, R.
(1988) Learning internal representations by
error propagation. In: Neurocomputing, (Ander-
son, J. and Rosenfeld, E.), MIT Press, Cam-
bridge, MA, pp. 675–695.
51. Mian, S., Ball, G., Hornbuckle, J., et al. (2003)
Aprototype methodology combining surface
enhanced laser desorption/ionization protein
chip technology and artificial neural network
algorithms to predict the chemoresponsive-
ness of breast cancer cell lines exposed to
Paclitaxel and Doxorubicin under in vitro
condition. Proteomics 3, 1725–1737.
52. Ball, G., Mian, S., Allibone, R. O., et al. (2002)
An integrated approach using artificial neural
networks and SELDI mass spectrometry for
the classification of human tumors and rapid
identification of potential biomarkers. Bioin-
formatics 18, 395–404.
53. Poon, T. C. W., Yip, T., Chan, A. T. C., Yip, C.,
Yip, V., and Mok, T. S. K. (2003) Comprehen-
sive proteomic profiling identifies serum
proteomic signatures for detection of hepato-
cellular carcinoma and its subtypes. Clin.
Chem. 49, 752–760.
54. Kohonen, T. (1995) Self Organizing Maps.
Springer Publishers, Berlin, Germany.
55. Breiman, L. (1996) Bagging predictors. Machine
Learning 24, 123–140.
03_Jortani.qxd 11/21/06 3:07 PM Page 31