© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 9
Lab Using Wireshark to Examine Ethernet Frames
Topology
Objectives
Part 1: Examine the Header Fields in an Ethernet II Frame
Part 2: Use Wireshark to Capture and Analyze Ethernet Frames
Background / Scenario
When upper layer protocols communicate with each other, data flows down the Open Systems
Interconnection (OSI) layers and is encapsulated into a Layer 2 frame. The frame composition is dependent
on the media access type. For example, if the upper layer protocols are TCP and IP and the media access is
Ethernet, then the Layer 2 frame encapsulation will be Ethernet II. This is typical for a LAN environment.
When learning about Layer 2 concepts, it is helpful to analyze frame header information. In the first part of this
lab, you will review the fields contained in an Ethernet II frame. In Part 2, you will use Wireshark to capture
and analyze Ethernet II frame header fields for local and remote traffic.
Required Resources
1 PC (Windows 7, 8, or 10 with internet access with Wireshark installed)
Part 1: Examine the Header Fields in an Ethernet II Frame
In Part 1, you will examine the header fields and content in an Ethernet II frame. A Wireshark capture will be
used to examine the contents in those fields.
Step 1: Review the Ethernet II header field descriptions and lengths.
Preamble
Destination
Address
Source
Address
Frame
Type Data FCS
8 Bytes 6 Bytes 6 Bytes 2 Bytes 46 1500 Bytes 4 Bytes
Lab Using Wireshark to Examine Ethernet Frames
© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 2 of 9
Step 2: Examine the network configuration of the PC.
This PC host IP address is 192.168.1.147 and the default gateway has an IP address of 192.168.1.1.
Step 3: Examine Ethernet frames in a Wireshark capture.
The Wireshark capture below shows the packets generated by a ping being issued from a PC host to its
default gateway. A filter has been applied to Wireshark to view the ARP and ICMP protocols only. The
Lab Using Wireshark to Examine Ethernet Frames
© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 3 of 9
session begins with an ARP query for the MAC address of the gateway router, followed by four ping requests
and replies.
Lab Using Wireshark to Examine Ethernet Frames
© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 4 of 9
Step 4: Examine the Ethernet II header contents of an ARP request.
The following table takes the first frame in the Wireshark capture and displays the data in the Ethernet II
header fields.
Field Value Description
Preamble Not shown in capture
This field contains synchronizing bits, processed by the NIC
hardware.
Destination Address
Broadcast
(ff:ff:ff:ff:ff:ff)
Layer 2 addresses for the frame. Each address is 48 bits
long, or 6 octets, expressed as 12 hexadecimal digits, 0-
9,A-F.
A common format is 12:34:56:78:9A:BC.
The first six hex numbers indicate the manufacturer of the
network interface card (NIC), the last six hex numbers are
the serial number of the NIC.
The destination address may be a broadcast, which contains
all ones, or a unicast. The source address is always unicast.
Source Address
BelkinIn_9f:6b:8c
(14:91:82:9f:6b:8c)
Frame Type 0x0806
For Ethernet II frames, this field contains a hexadecimal
value that is used to indicate the type of upper-layer protocol
in the data field. There are numerous upper-layer protocols
supported by Ethernet II. Two common frame types are
these:
Value Description
0x0800 IPv4 Protocol
0x0806
Address Resolution Protocol (ARP)
Data ARP
Contains the encapsulated upper-level protocol. The data
field is between 46 1,500 bytes.
FCS Not shown in capture
Frame Check Sequence, used by the NIC to identify errors
during transmission. The value is computed by the sending
machine, encompassing frame addresses, type, and data
field. It is verified by the receiver.
What is significant about the contents of the destination address field?
Why does the PC send out a broadcast ARP prior to sending the first ping request?
What is the MAC address of the source in the first frame?
What is the Vendor ID (OUI) of the Source NIC?
What portion of the MAC address is the OUI?
What is the NIC serial number of the source?
Lab Using Wireshark to Examine Ethernet Frames
© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 5 of 9
Part 2: Use Wireshark to Capture and Analyze Ethernet Frames
In Part 2, you will use Wireshark to capture local and remote Ethernet frames. You will then examine the
information that is contained in the frame header fields.
Step 1: Determine the IP address of the default gateway on your PC.
Open a command prompt window and issue the ipconfig command.
What is the IP address of the PC default gateway?
Step 2: Start capturing traffic on your PC NIC.
a. Close Wireshark. No need to save the captured data.
b. Open Wireshark, start data capture.
c. Observe the traffic that appears in the packet list window.
Step 3: Filter Wireshark to display only ICMP traffic.
You can use the filter in Wireshark to block visibility of unwanted traffic. The filter does not block the capture
of unwanted data; it only filters what to display on the screen. For now, only ICMP traffic is to be displayed.
Lab Using Wireshark to Examine Ethernet Frames
© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 6 of 9
In the Wireshark Filter box, type icmp. The box should turn green if you typed the filter correctly. If the box is
green, click Apply (the right arrow) to apply the filter.
Step 4: From the command prompt window, ping the default gateway of your PC.
From the command window, ping the default gateway using the IP address that you recorded in Step 1.
Step 5: Stop capturing traffic on the NIC.
Click the Stop Capture icon to stop capturing traffic.
Step 6: Examine the first Echo (ping) request in Wireshark.
The Wireshark main window is divided into three sections: the packet list pane (top), the Packet Details pane
(middle), and the Packet Bytes pane (bottom). If you selected the correct interface for packet capturing in
Lab Using Wireshark to Examine Ethernet Frames
© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 7 of 9
Step 3, Wireshark should display the ICMP information in the packet list pane of Wireshark, similar to the
following example.
a. In the packet list pane (top section), click the first frame listed. You should see Echo (ping) request
under the Info heading. This should highlight the line blue.
b. Examine the first line in the packet details pane (middle section). This line displays the length of the
frame; 74 bytes in this example.
c. The second line in the packet details pane shows that it is an Ethernet II frame. The source and
destination MAC addresses are also displayed.
What is the MAC address of the PC NIC?
What is the default gateway’s MAC address?
d. You can click the plus (+) sign at the beginning of the second line to obtain more information about the
Ethernet II frame. Notice that the plus sign changes to a minus (-) sign.
What type of frame is displayed?
e. The last two lines displayed in the middle section provide information about the data field of the frame.
Notice that the data contains the source and destination IPv4 address information.
What is the source IP address?
What is the destination IP address?
Lab Using Wireshark to Examine Ethernet Frames
© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 8 of 9
f. You can click any line in the middle section to highlight that part of the frame (hex and ASCII) in the
Packet Bytes pane (bottom section). Click the Internet Control Message Protocol line in the middle
section and examine what is highlighted in the Packet Bytes pane.
What do the last two highlighted octets spell?
g. Click the next frame in the top section and examine an Echo reply frame. Notice that the source and
destination MAC addresses have reversed, because this frame was sent from the default gateway router
as a reply to the first ping.
What device and MAC address is displayed as the destination address?
Step 7: Restart packet capture in Wireshark.
Click the Start Capture icon to start a new Wireshark capture. You will receive a popup window asking if you
would like to save the previous captured packets to a file before starting a new capture. Click Continue
without Saving.
Step 8: In the command prompt window, ping www.cisco.com
.
Step 9: Stop capturing packets.
Step 10: Examine the new data in the packet list pane of Wireshark.
In the first echo (ping) request frame, what are the source and destination MAC addresses?
Source:
Destination:
What are the source and destination IP addresses contained in the data field of the frame?
Source:
Lab Using Wireshark to Examine Ethernet Frames
© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 9 of 9
Destination:
Compare these addresses to the addresses you received in Step 6. The only address that changed is the
destination IP address. Why has the destination IP address changed, while the destination MAC address
remained the same?
Reflection
Wireshark does not display the preamble field of a frame header. What does the preamble contain?