Davis et al.: Nutrient effects on toxic Microcystis
ulation of the toxic cyanobacterium Microcystis sp. Appl
Environ Microbiol 69:6723–6730
Lee T, Tsuzuki M, Takeuchi T, Yokoyama K, Karube I (1994)
In vivo fluorometric method for early detection of
cyanobacterial waterblooms. J Appl Phycol 6:489–495
Lewis WM Jr, Wurtsbaugh WA (2008) Control of lacustrine
phytoplankton by nutrients: erosion of the phosphorus
paradigm. Int Rev Hydrobiol 93:446–465
Likens GE (1972) Eutrophication and aquatic ecosystems. In:
Nutrients and eutrophication: the limiting-nutrient contro-
versy. Limnol Oceanogr (Spec Symp) 1:3–13
Lindroth P, Mopper K (1979) High performance liquid chro-
matographic determination of subpicomole amounts of
amino acids by precolumn fluorescence derivatization
with ophthaldialdehyde. Anal Chem 51:1667–1674
Livak KJ, Schmittgen TD (2001) Analysis of relative gene
expression data using real-time quantitative PCR and the
2-ΔΔCt method. Methods 25:402–408
Long BM, Jones GJ, Orr PT (2001) Cellular microcystin con-
tent in N-limited Microcystis aeruginosa can be predicted
from growth rate. Appl Environ Microbiol 67:278–283
Mitamura O, Saijo Y, Hino K, Barbosa FAR (1995) The signif-
icance of regenerated nitrogen for phytoplankton produc-
tivity in the Rio Doce Valley Lakes, Brazil. Arch Hydrobiol
134:179–194
Moisander PH, Ochiai M, Lincoff A (2009a) Nutrient limita-
tion of Microcystis aeruginosa in northern California
Klamath River reservoirs. Harmful Algae 8:889–897
Moisander PH, Lehman PW, Ochiai M, Corum S (2009b)
Diversity of Microcystis aeruginosa in the Klamath River
and San Fancisco Bay delta, California, USA. Aquat
Microb Ecol 57:19–31
Nagata S, Tsutsumi T, Hasegawa A, Yoshida F, Ueno Y,
Watanabe MF (1997) Enzyme immunoassay for the direct
determination of microcystins in environmental water.
J AOAC Int 80:408–417
Neilan BA, Jacobs D, DelDot T, Blackall LL, Hawkins PR,
Cox PT, Goodman AE (1997) rRNA sequences and evolu-
tionary relationships among toxic and nontoxic cyanobac-
teria of the genus Microcystis. Int J Syst Bacteriol 47:
693–697
Oberholster PJ, Botha AM, Cloete TE (2006) Use of molecular
markers as indicators for winter zooplankton grazing on
toxic benthic cyanobacteria colonies in an urban Colorado
lake. Harmful Algae 5:705–716
Oh HM, Lee SJ, Jang MH, Yoon BD (2000) Microcystin
production by Microcystis aeruginosa in a phosphorus-
limited chemostat. Appl Environ Microbiol 66:176–179
Orr PT, Jones GJ (1998) Relationship between microcystin
production and cell division rates in nitrogen-limited
Microcystis aeruginosa cultures. Limnol Oceanogr 43:
1604–1614
Paerl HW (1982) Environmental factors promoting and regu-
lating N-fixing blue-green algal blooms in the Chowan
River. North Carolina Water Resour Res Inst Rep 176, Uni-
versity of North Carolina, Raleigh, NC
Paerl HW (1988) Nuisance phytoplankton blooms in coastal,
estuarine, and inland waters. Limnol Oceanogr 33:
823–847
Paerl HW (1997) Coastal eutrophication and harmful algal
blooms: importance of anthropogenic deposition and
groundwater as ‘new’ nitrogen and other nitrogen
sources. Limnol Oceanogr 42:1154–1165
Paerl HW (2008) Nutrient and other environmental controls of
harmful cyanobacterial blooms along the freshwater–
marine continuum. In: Hudnell KH (ed) Cyanobacterial
harmful algal blooms: state of the science and research
needs. Advances in experimental medicine and biology,
Vol 619. Springer Publishing, New York, NY
Paerl HW (2009) Controlling eutrophication along the fresh-
water–marine continuum: dual nutrient (N and P) reduc-
tions are essential. Estuaries Coasts 32:593–601
Paerl HW, Fulton RS, Moisander PH, Dyble J (2001) Harmful
freshwater algal blooms with an emphasis on cyanobacte-
ria. TheScientificWorldJournal 1:76–113
Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical
and biological methods for seawater analysis. Pergamon
Press, Oxford
Présing M, Preston T, Takátsy A, Spröber P and others (2008)
Phytoplankton nitrogen demand and the significance of
internal and external nitrogen sources in a large shallow
lake (Lake Balaton, Hungary). Hydrobiologia 599:87–95
Price NM, Harrison PJ (1987) Comparison of methods for the
analysis of dissolved urea in seawater. Mar Biol 94:
307–317
Rapala J, Sivonen K, Lyra C, Niemela SI (1997) Variation of
microcystins, cyanobacterial hepatotoxins, in Anabaena
spp. as a function of growth stimulation. Appl Environ
Microbiol 63:2206–2212
Rinta-Kanto JM, Wilhelm SW (2006) Diversity of microcystin-
producing cyanobacteria in spatially isolated regions of
Lake Erie. Appl Environ Microbiol 72:5083–5085
Rinta-Kanto JM, Ouellette AJA, Boyer GL, Twiss MR, Bridge-
man TB, Wilhelm SW (2005) Quantification of toxic Micro-
cystis spp. during the 2003 and 2004 blooms in western
Lake Erie using quantitative real-time PCR. Environ Sci
Technol 39:4198–4205
Rinta-Kanto JM, Konopko EA, DeBruyn JM, Bourbonniere
RA, Boyer GL, Wilhelm SW (2009a) Lake Erie Microcystis:
relationship between microcystin production, dynamics of
genotypes and environmental parameters in a large lake.
Harmful Algae 8:665–673
Rinta-Kanto JM, Saxton MA, DeBruyn JM, Smith JL and
others (2009b) The diversity and distribution of toxigenic
Microcystis spp. in present day and archived pelagic and
sediment samples from Lake Erie. Harmful Algae 8:
385–394
Schindler DW (1977) Evolution of phosphorus limitation in
lakes. Science 195:260–262
Schindler DW, Hecky RE, Findlay DL, Stainton MP and others
(2008) Eutrophication of lakes cannot be controlled by
reducing nitrogen input: results of a 37-year whole-
ecosystem experiment. Proc Natl Acad Sci USA 105:
11254–11258
Smith VH (1983) Low nitrogen to phosphorus ratios favor
dominance by blue-green algae in lake phytoplankton.
Science 221:669–671
Takamura N, Iwakuma T, Yasuno M (1987) Uptake of
13
C and
15
N (ammonium, nitrate, and urea) by Microcystis in Lake
Kasumigaura. J Plankton Res 9:151–165
Tango PJ, Butler W (2008) Cyanotoxins in tidal waters of
Chesapeake Bay. Northwest Nat 15:403–416
Tillett D, Dittmann E, Erhard M, von Dohren H, Borner T,
Neilan BA (2000) Structural organization of microcystin
biosynthesis in Microcystis aeruginosa PCC7806: an inte-
grated peptide–polyketide synthetase system. Chem Biol
7:753–764
Utkilen H, Gjølme N (1995) Iron-stimulated toxin production
in Microcystis aeruginosa. Appl Environ Microbiol 61:
797–800
Valderrama JC (1981) The simultaneous analysis of total N
and total P in natural waters. Mar Chem 10:109–122
Vézie C, Rapala J, Vaitomaa J, Seitsonen J, Sivonen K (2002)
Effect of nitrogen and phosphorus on growth of toxic and
161